\(\int \frac {(d^2-e^2 x^2)^p}{(d+e x)^4} \, dx\) [300]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 22, antiderivative size = 73 \[ \int \frac {\left (d^2-e^2 x^2\right )^p}{(d+e x)^4} \, dx=-\frac {2^{-4+p} \left (1+\frac {e x}{d}\right )^{-1-p} \left (d^2-e^2 x^2\right )^{1+p} \operatorname {Hypergeometric2F1}\left (4-p,1+p,2+p,\frac {d-e x}{2 d}\right )}{d^5 e (1+p)} \]

[Out]

-2^(-4+p)*(1+e*x/d)^(-1-p)*(-e^2*x^2+d^2)^(p+1)*hypergeom([p+1, 4-p],[2+p],1/2*(-e*x+d)/d)/d^5/e/(p+1)

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 73, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {692, 71} \[ \int \frac {\left (d^2-e^2 x^2\right )^p}{(d+e x)^4} \, dx=-\frac {2^{p-4} \left (\frac {e x}{d}+1\right )^{-p-1} \left (d^2-e^2 x^2\right )^{p+1} \operatorname {Hypergeometric2F1}\left (4-p,p+1,p+2,\frac {d-e x}{2 d}\right )}{d^5 e (p+1)} \]

[In]

Int[(d^2 - e^2*x^2)^p/(d + e*x)^4,x]

[Out]

-((2^(-4 + p)*(1 + (e*x)/d)^(-1 - p)*(d^2 - e^2*x^2)^(1 + p)*Hypergeometric2F1[4 - p, 1 + p, 2 + p, (d - e*x)/
(2*d)])/(d^5*e*(1 + p)))

Rule 71

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)/(b*(m + 1)*(b/(b*c
 - a*d))^n))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-d/(b*c - a*d), 0]))

Rule 692

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[d^(m - 1)*((a + c*x^2)^(p + 1)/((1
+ e*(x/d))^(p + 1)*(a/d + (c*x)/e)^(p + 1))), Int[(1 + e*(x/d))^(m + p)*(a/d + (c/e)*x)^p, x], x] /; FreeQ[{a,
 c, d, e, m}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && (IntegerQ[m] || GtQ[d, 0]) &&  !(IGtQ[m, 0] && (
IntegerQ[3*p] || IntegerQ[4*p]))

Rubi steps \begin{align*} \text {integral}& = \frac {\left ((d-e x)^{-1-p} \left (1+\frac {e x}{d}\right )^{-1-p} \left (d^2-e^2 x^2\right )^{1+p}\right ) \int (d-e x)^p \left (1+\frac {e x}{d}\right )^{-4+p} \, dx}{d^5} \\ & = -\frac {2^{-4+p} \left (1+\frac {e x}{d}\right )^{-1-p} \left (d^2-e^2 x^2\right )^{1+p} \, _2F_1\left (4-p,1+p;2+p;\frac {d-e x}{2 d}\right )}{d^5 e (1+p)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.28 (sec) , antiderivative size = 75, normalized size of antiderivative = 1.03 \[ \int \frac {\left (d^2-e^2 x^2\right )^p}{(d+e x)^4} \, dx=-\frac {2^{-4+p} (d-e x) \left (1+\frac {e x}{d}\right )^{-p} \left (d^2-e^2 x^2\right )^p \operatorname {Hypergeometric2F1}\left (4-p,1+p,2+p,\frac {d-e x}{2 d}\right )}{d^4 e (1+p)} \]

[In]

Integrate[(d^2 - e^2*x^2)^p/(d + e*x)^4,x]

[Out]

-((2^(-4 + p)*(d - e*x)*(d^2 - e^2*x^2)^p*Hypergeometric2F1[4 - p, 1 + p, 2 + p, (d - e*x)/(2*d)])/(d^4*e*(1 +
 p)*(1 + (e*x)/d)^p))

Maple [F]

\[\int \frac {\left (-e^{2} x^{2}+d^{2}\right )^{p}}{\left (e x +d \right )^{4}}d x\]

[In]

int((-e^2*x^2+d^2)^p/(e*x+d)^4,x)

[Out]

int((-e^2*x^2+d^2)^p/(e*x+d)^4,x)

Fricas [F]

\[ \int \frac {\left (d^2-e^2 x^2\right )^p}{(d+e x)^4} \, dx=\int { \frac {{\left (-e^{2} x^{2} + d^{2}\right )}^{p}}{{\left (e x + d\right )}^{4}} \,d x } \]

[In]

integrate((-e^2*x^2+d^2)^p/(e*x+d)^4,x, algorithm="fricas")

[Out]

integral((-e^2*x^2 + d^2)^p/(e^4*x^4 + 4*d*e^3*x^3 + 6*d^2*e^2*x^2 + 4*d^3*e*x + d^4), x)

Sympy [F]

\[ \int \frac {\left (d^2-e^2 x^2\right )^p}{(d+e x)^4} \, dx=\int \frac {\left (- \left (- d + e x\right ) \left (d + e x\right )\right )^{p}}{\left (d + e x\right )^{4}}\, dx \]

[In]

integrate((-e**2*x**2+d**2)**p/(e*x+d)**4,x)

[Out]

Integral((-(-d + e*x)*(d + e*x))**p/(d + e*x)**4, x)

Maxima [F]

\[ \int \frac {\left (d^2-e^2 x^2\right )^p}{(d+e x)^4} \, dx=\int { \frac {{\left (-e^{2} x^{2} + d^{2}\right )}^{p}}{{\left (e x + d\right )}^{4}} \,d x } \]

[In]

integrate((-e^2*x^2+d^2)^p/(e*x+d)^4,x, algorithm="maxima")

[Out]

integrate((-e^2*x^2 + d^2)^p/(e*x + d)^4, x)

Giac [F]

\[ \int \frac {\left (d^2-e^2 x^2\right )^p}{(d+e x)^4} \, dx=\int { \frac {{\left (-e^{2} x^{2} + d^{2}\right )}^{p}}{{\left (e x + d\right )}^{4}} \,d x } \]

[In]

integrate((-e^2*x^2+d^2)^p/(e*x+d)^4,x, algorithm="giac")

[Out]

integrate((-e^2*x^2 + d^2)^p/(e*x + d)^4, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (d^2-e^2 x^2\right )^p}{(d+e x)^4} \, dx=\int \frac {{\left (d^2-e^2\,x^2\right )}^p}{{\left (d+e\,x\right )}^4} \,d x \]

[In]

int((d^2 - e^2*x^2)^p/(d + e*x)^4,x)

[Out]

int((d^2 - e^2*x^2)^p/(d + e*x)^4, x)